Degrees Offered
Bachelor of Science in Bioengineering
Bachelor of Science in Civil Engineering
Bachelor of Science in Computer Engineering
Bachelor of Science in Computer Science
Bachelor of Science in Electrical Engineering
Bachelor of Science in Engineering Management
Bachelor of Science in Engineering Physics
Bachelor of Science in Mechanical Engineering
Master of Science in Engineering Science
Master of Science in Data Science

Minors
Computer Science
Engineering Management
Environmental Engineering
Project Management (for non-engineering majors)
Structural Engineering
Sustainability
Technology (for non-engineering majors)
Technological Innovation and Entrepreneurship

Mission
The mission of the School of Engineering and Computer Science is to provide a superior, student-centered learning environment which emphasizes close faculty-student interaction, experiential education, and distinctive research opportunities. Graduates will be prepared to excel as professionals, pursue advanced degrees, and possess the technical knowledge, critical thinking skills, creativity, and ethical values needed to lead the development and application of technology for bettering society and sustaining the world environment.

Engineering
No single definition of engineering is adequate; however, engineering is well described as the application link between science and society. Engineers must have the ability to apply theoretical knowledge to practical situations. They are agents through whom science influences our society.

At the School of Engineering and Computer Science, engineers must develop dual competencies - technical and social. They must understand the principles of science as well as the nature of human needs and behavior and the impact of technology on society. The modern engineer deals with socially relevant matters that include pollution, energy resources, sustainability, health care and public transportation systems. Engineers are experts in manufacturing processes, communications systems, medical electronics, the space program and numerous other endeavors that provide citizens of the world with a safer, more enjoyable life.

The Engineering Program at University of the Pacific consists of three well-integrated parts:

1. Mathematics, natural sciences and a broad range of courses in the humanities and social sciences;
2. Engineering courses, which provide the specialized training for professional competence in engineering;
3. On-the-job experience in the Cooperative Education (Co-op) Program described below.

Through this threefold program, theory and practice are brought together; human problems and engineering come into sharp focus; and students find increased meaning in their studies.

By studying at a private university with a strong liberal arts heritage, Pacific engineering students interact with students whose objectives, attitudes and approaches to human problems are different from their own. They experience meaningful associations with students from a variety of social, political and cultural backgrounds.

Computer Science
The Computer Science Department provides an education in computer science which features current and emerging technologies and experiential learning. This program offers a strong background in the theory and practice of computer science. Students select a concentration based on their post-graduation plans. Selection of an area of concentration guides students in the selection of elective courses. Students trained in computer science are among the change agents responsible for forging new computing breakthroughs and new interactions with other disciplines.

The computer science program includes a general education component, a math and science component, a computer science core component and upper division electives. The electives may be chosen based on a selected area of concentration or may be determined by the student in consultation with their academic advisor.

Degrees in Engineering and Computer Science
The School of Engineering and Computer Science offers eight Bachelor of Science (BS) degree programs: Bioengineering, Civil Engineering, Computer Engineering, Computer Science, Electrical Engineering, Engineering Management, Engineering Physics, and Mechanical Engineering. The curricula are divided into lower-division and upper-division segments.

The lower-division engineering curriculum stresses fundamentals in science, mathematics and engineering. The first two years are similar for all engineering majors. The upper-division curricula combine courses for the degree major with work experience through the Co-op Program.

The Computer Science Department offers a BS degree in Computer Science. A minor program is also available. The curriculum for the Computer Science program includes a core of courses that give students a solid understanding of fundamental computing knowledge and skills. The major has a variety of concentrations that offer a course of study around a theme. The concentrations offer a flexible range of courses that promote a student’s specific interests and post-graduate plans. They also guide the selection of elective courses. The available concentrations are Networking and Computer Security, Graphics and Simulation, and Software Development. Students may also choose to select a custom
set of electives in consultation with their academic advisor, for a degree without a specific concentration.

The School of Engineering and Computer Science offers two Master of Science (MS) programs: the MS in Data Science and the MS in Engineering Science. The Masters of Science in Engineering Science (MSES) degree has four concentration options in:

1. Civil Engineering
2. Computer Engineering, Electrical Engineering, Computer Science
3. Engineering Management
4. Mechanical Engineering

The MSES degree is designed to strengthen students’ technical, analytical, and professional breadth and depth. Students are introduced to techniques and best practices of professional research and learn the foundations for assessing the merits of published technical findings.

Accelerated Blended Program

The accelerated Blended Program provides an excellent opportunity for students to begin their graduate work while completing their undergraduate degree requirements. Students can pursue the accelerated Blended Program which allows them to complete their bachelors and masters degree in as little as five years. This five year period includes some summer sessions, depending upon whether advanced placement units were earned prior to starting at Pacific.

Students begin by enrolling in an undergraduate program in the Pacific SOECS. Following acceptance into the Blended Program, students may begin taking graduate level courses at any time after they reach senior status which allows the bachelors and masters degrees to blend together. The two degrees are awarded on the same date.

Accreditation

The Computer Science program leading to a Bachelor Degree in Computer Science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

Student Organizations

All students are encouraged to actively participate in a professional society appropriate to their major.

National Honor Societies

Tau Beta Pi (Engineering Honor Society - all engineering majors)
Eta Kappa Nu (Honor Society for Electrical, Computer Engineering, Engineering Physics majors)

Student Affiliates of Professional Organizations

American Society of Civil Engineers (ASCE)
American Society of Mechanical Engineers (ASME)
Association for Computing Machinery (ACM)
Institute of Electrical and Electronic Engineers (IEEE)
National Society of Black Engineers (NSBE)
Society of Hispanic Professional Engineers (SHPE)
Society of Women Engineers (SWE)

Society of Automotive Engineers (SAE)
Associated Engineering Students (AES)
Associated Students of Engineering Management (ASEM)
Biomedical Engineering Society (BMES)
Theta Tau (Professional Engineering Fraternity)

Pacific MESA Center

The Pacific Mathematics, Engineering and Science Achievement (MESA) Center is the home of two programs: The MESA Schools Program (MSP) and the MESA Engineering Program (MEP).

Both MSP and MEP programs serve educationally disadvantaged students who have traditionally not considered entering into math or science based professions. MSP goals are to create an academic community that increases the number of students who graduate from high school and attend college, majoring in math-based fields. MSP provides hands-on math and science activities as well as academic enrichment to 1,900 students in the 6-12th grades. By providing a rigorous, all-sided learning environment that includes academic advising, peer group learning, career exploration, parent involvement, and other services, students’ confidence, expectations, and successes have soared. Specific MEP goals are to increase matriculation, retention, and graduation rates of the students enrolled in the School of Engineering and Computer Science. MEP seeks to fulfill the above goals through collaborations and partnerships with an Industrial Advisory Board, three student chapters of related professional organizations, the National Consortium for Minority Engineering Students Pursuing a Graduate Degree (GEM), the National Association for Minority Engineering Program Administrators (NAMEPA), and the National Action Council for Minorities in Engineering (NACME).

Pacific MESA Center activities and support features include: pre-college outreach, financial aid (scholarships), career fairs, awards, banquets, hands-on math and science workshops, enhanced advising and counseling, tutoring, motivational seminars, Saturday and summer programs, and a student study center.

General Education Requirements for Engineering and Computer Science Programs

The general education requirements for engineering and computer science students are as follows: all entering freshmen must take PACS 001, and PACS 002. As seniors they must take PACS 003. All students must take ENGR 030, Engineering Ethics and Society which is in Category IIB of the general education program. In addition, they must take a total of three courses: two from Category I-The Individual and Society and one from Category II-Human Heritage. Only one class can come from each subdivision (A, B or C) within each category. These courses must be selected to allow the student to gain the broad education necessary to understand the societal impact of engineering and technology. The student’s advisor will assist in the selection of courses.

Pacific accepts a 4 or higher for Advanced Placement and a 5 or higher for Higher Level International Baccalaureate and a maximum of 28 units total from Advanced Placement, International Baccalaureate DANTES and/or CLEP test results may be applied toward a Pacific degree including General Education and major requirements.

Transfer General Education

SOECS transfer students are normally required to have six General Education courses in Categories I and II, one course in each of the six
category/subdivision combinations. (i.e., IA, IB, IC, IIA, IIB, IIC). All SOECS students are required to take ENGR 030, which satisfies the IIB area. Under certain circumstances, the School allows one substitution of a course taken prior to transferring to Pacific to meet requirements in a different subdivision within the same category. All transfer students MUST take courses in at least five different subdivisions.

The School of Engineering and Computer Science accepts the transfer of a general education program (IGETC - the transfer core curriculum which fulfills the lower division general education requirements) from any community college.

Transfer students who have completed 28 or more units of transferable, classroom college work that appears on a transcript are exempt from taking PACS 001 and PACS 002, but must complete PACS 003 during their senior year.

General Academic Policies

Engineering and Computer Science Prerequisite Requirement
All engineering and computer science course prerequisites must be passed with a C- or higher grade.

Courses Taken Pass/No Credit
A student may request to register for one (1) general education course per semester on a Pass/No Credit basis in either Category I or II of the general education program by filing the completed Pass/No Credit form in the Office of the Registrar before the deadline established by the Office of the Registrar (approximately the end of the second week of classes). This petition must include the approval of the professor teaching the course and the student’s advisor. A maximum of 16 Pass/No Credit units may be applied to meet the GE degree requirements. All other classes, including Technical Writing, Independent Studies and the basic science or mathematics elective classes, must be taken for a letter grade.

Independent Studies and Undergraduate Research
Students who have an interest in a subject not offered as a regular course and who, by their overall performance at Pacific, have proven their ability to do independent work, may enroll in an independent study. The qualified student initiates discussions with his/her advisor and with a professor who is knowledgeable in the subject. If both parties are in agreement, the student must complete the Independent Study Form and submit it to the instructor before the end of the third week of classes. If the independent study is to be used to meet a general education requirement, it must also have the approval of the Department’s General Education Coordinator. Students on academic probation are not permitted to enroll in independent study courses in any department of the University. The following School of Engineering and Computer Science policies apply:

1. The course(s) may not be substituted for a regularly scheduled course unless approved by the department.
2. If the course is to be used as an elective, approval by the student’s advisor and the department chairperson is required.
3. All courses must be taken for a letter grade; the pass/no credit option is not allowed for independent study courses.
4. Only one independent study course may be taken per term.
5. Each course may be taken for one (1), two (2), three (3), or four (4) units. The unit value for the course is established between the student and the professor responsible for the course. The student’s advisor is informed of this decision.

6. A maximum of eight (8) units of independent study and undergraduate research may be used to satisfy graduation requirements.

Course Substitutions
The substitution of course(s) from the printed major program is discouraged. When extenuating circumstances warrant consideration, the student meets with his/her advisor, and the final decision must have the approval of the department chair. Consideration is given to the source of the problem (school, student, etc.), severity of the hardship case, and what the department considers best for the individual.

If a course substitution is allowed, ABET guidelines must be followed.

Students who enter an engineering or computer science program with 28 or more units are exempt from ENGR 010.

Fundamental Skills Requirement
Students are required to satisf the University Fundamental Skills Requirements (i.e., Writing and Mathematics) prior to enrolling in any upper-division engineering or computer science courses.

Internal Transfer Requirements
Students at University of the Pacific wishing to transfer into the School of Engineering and Computer Science:

1. Must have satisfied all Pacific Fundamental Skills requirements.
2. Must have completed Math 41 (or equivalent).
3. Must have a cumulative GPA of 2.5

Graduation Requirements (Engineering Degree Programs)
It is important that each student carefully monitor his or her academic program. Each student is expected to consult regularly with his or her faculty advisor. Meeting the graduation requirements is each student’s responsibility. If a student deviates from the printed curriculum, careful academic scheduling is required and a plan must be developed that indicates all courses needed for graduation, and when the classes will be taken. After the plan of classes is completed, the schedule must be approved by the student’s faculty advisor and the Director of Cooperative Education.

In order to graduate, students must meet the following requirements:

1. Successful completion of at least 120 units.
2. Successful completion of all courses required in the student’s major.
3. Successful completion of a minimum of 32 Cooperative Education credits and the Professional Practice Seminar.
4. A GPA of at least 2.0 on all letter-graded work completed at Pacific.
5. A GPA of at least 2.0 for all engineering and computer science courses completed at Pacific.
6. Engineering Management students must have at least a 2.0 GPA in their business/management classes.
7. Submission of application for graduation to the Office of the Registrar. Refer to the Academic Regulations section of the catalog.

Graduation Requirements (Computer Science Degree Program)
1. Successful completion of at least 120 units.
2. Successful completion of all courses required in the student’s major.
3. A GPA of at least 2.0 on all letter-graded work completed at Pacific.
4. A GPA of at least 2.0 for all engineering and computer science courses completed at Pacific.
5. Submission of application for graduation to the Office of the Registrar. Refer to the Academic Regulations section of the catalog.

Limitation on Obtaining Two Degrees
The SOECS, in conjunction with the Office of the Registrar, approves the student who receives a second bachelor of science degree subject to the following conditions:

1. The student must meet all requirements for each degree and must file a study plan, approved by his/her advisor, with the Office of the Registrar.
2. The pursuit of a double degree is not a valid reason for waiving any SOECS or University requirements.

Computer Science Minor
Computing technology is an integral part of many fields of study. The Computer Science minor provides students with an introduction to application development. Students must take three core courses and three elective courses that are tailored to a specific interest. It is recommended that students begin the minor program early in their college career (21-24 units).

Minor in Computer Science Requirements
Students must complete a minimum of 21 units and 6 courses with a Pacific minor grade point average of 2.0 in order to earn a minor in computer science.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 051</td>
<td>Introduction to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>COMP 053</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>One COMP course numbered 025 or higher</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>One COMP course numbered 047 or higher</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Two upper division COMP courses</td>
<td>6-8</td>
<td></td>
</tr>
</tbody>
</table>

Minor in Engineering Management
Industry and the engineering societies encourage engineering students to have management skills because the average engineering graduate is in some aspect of management within three to five years of graduation.

The minor in Engineering Management is for students majoring in engineering who desire an understanding of management concepts and basic engineering management skills.

Minor in Engineering Management Requirements
Students must complete a minimum of 20 units and 5 courses with a Pacific minor grade point average of 2.0 in order to earn a minor in engineering management.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSI 031</td>
<td>Principles of Financial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>EMGT 170</td>
<td>Project Decision Making</td>
<td>4</td>
</tr>
<tr>
<td>EMGT 174</td>
<td>Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>EMGT 176</td>
<td>Systems Engineering Management</td>
<td></td>
</tr>
<tr>
<td>BUSI 104</td>
<td>Operations Management</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BUSI 033</td>
<td>Principles of Managerial Accounting</td>
<td></td>
</tr>
<tr>
<td>BUSI 100</td>
<td>Management Information Systems</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1) All courses that count toward the minor must be taken for a letter grade. 2) ENGR 025 may be used to provide 1 additional unit.

Minor in Project Management (for Non-Engineering Students Only)
Non-engineering major students may seek a Minor in Project Management in order to gain understanding of the specific issues and approaches to management in an engineering or high technology context. This minor requires a tightly knit suite of at least six engineering, computer science and business courses, providing complementary insights into technology and the challenges of project management within an engineering or technical organization. Though some courses are open to engineering and computer science majors, the nature of the material is such that non-engineering students are able to understand the material and successfully complete course requirements.

The Minor in Project Management is particularly useful to those students anticipating a career in organizations having a:

- Significant number of engineers
- Project orientation
- Reliance on technology, or
- Emphasis on manufacturing

Minor in Project Management Requirements
Students must complete a minimum of 21 units and 6 courses with a Pacific minor grade point average of 2.0 in order to earn a minor in project management.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMGT 170</td>
<td>Project Decision Making</td>
<td>4</td>
</tr>
<tr>
<td>EMGT 174</td>
<td>Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>EMGT 176</td>
<td>Systems Engineering Management</td>
<td>4</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>10-12</td>
</tr>
<tr>
<td>BUSI 031</td>
<td>Principles of Financial Accounting</td>
<td></td>
</tr>
<tr>
<td>BUSI 109</td>
<td>Management and Organizational Behavior</td>
<td></td>
</tr>
<tr>
<td>COMP 025</td>
<td>Computers and Information Processing</td>
<td></td>
</tr>
<tr>
<td>COMP 051</td>
<td>Introduction to Computer Science</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CIVL 015</td>
<td>Civil Engineering Graphics</td>
<td></td>
</tr>
<tr>
<td>MECH 015</td>
<td>Mechanical Engineering Graphics</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1) Students must not be majoring in engineering. 2) All courses that count toward the minor must be taken for a letter grade.

Minor in Sustainability
Sustainability requires that short and long-term social, economic, and environmental impacts of products and processes be considered. With globalization of the world’s economies, continuing challenges with depletion of resources and increased global pollution, the well-being of society requires application of the principles of sustainability. The Minor in Sustainability is suggested for students who desire an understanding of sustainability or those who anticipate working for trans-national or development organizations. The interdisciplinary Minor in Sustainability is open to students of all majors.
Objectives:
- Students are able to identify and explain concepts and application of sustainability principles at the global, national, and local levels.
- Students are able to apply an interdisciplinary and systems approach to solving a problem or meeting a need.

Minor in Sustainability Requirements
Students must complete a minimum of 20 units with a Pacific minor grade point average of 2.0 in order to earn a minor in sustainability.

Note: Prerequisites of each course must be met.

Select at least one of the following technology courses: 3-4
- CIVL 171 Water and Environmental Policy
- CIVL 173 Sustainable Engineering
- EMGT 176 Systems Engineering Management
- MECH 155 Solar Energy Engineering

Select at least one of the following economics and society courses:* 4
- ECON 071 Global Economic Issues
- ECON 157 Environmental and Natural Resource Economics
- GESC 103 Global Change
- INTL 077 Contemporary World Issues
- INTL 174 Global Environmental Policy

Select at least one of the following environment and ethics courses: 4
- BIOL 035 Environment: Concepts and Issues
- BUSI 053 The Legal and Ethical Environment of Business
- ENGL 126 Environment and Literature
- GESC 043 Environmental Science for Informed Citizens
- HIST 136 American Environmental History
- GESC 045 Soil, Water, and War
- PHIL 035 Environmental Ethics
- SOCI 111 Environment and Society
- Sustainability Research and Practice (optional) ** 1-4

* The same course may not be used to satisfy course requirements.
** Engineering Synthesis, Senior Project/Thesis, Senior Design, undergraduate research, internship, or independent study related to sustainability may be used to provide up to four additional units.

Technological Innovation and Entrepreneurship Minor
Students must take two core courses and 12 units of elective courses.

Minor in Technological Innovation and Entrepreneurship Requirements
Students must complete a minimum of 20 units with a Pacific minor grade point average of 2.0 in order to earn a minor in technological innovation and entrepreneurship.

Select 12 units of the following: 12
- BENG 108 Engineering Physiology
- BENG 195 Senior Project
- CIVL 015 Civil Engineering Graphics
- CIVL 173 Sustainable Engineering
- CIVL 180 Engineering Synthesis
- COMP 127 Web Applications
- COMP 129 Software Engineering
- COMP 135 Human-Computer Interface Design
- COMP 155 Computer Simulation
- COMP 159 Computer Game Technologies
- COMP 195 CS Senior Project
- ECPE 172 Microcontrollers
- ECPE 174 Advanced Digital Design
- ECPE 195 Senior Project I
- ECPE 196 Senior Project II
- EMGT 170 Project Decision Making
- EMGT 174 Engineering Project Management
- EMGT 195 Engineering Management Synthesis
- MECH 015 Mechanical Engineering Graphics
- MECH 100 Manufacturing Processes
- MECH 140 Engineering Design/Senior Project I
- MECH 141 Engineering Design/Senior Project II

Minor in Technology (For Non-Engineering Students Only)
Engineering and technology are integral parts of many careers and fields of study. As “technology” has become so prevalent in our lives and careers, more and more companies are demanding that their employees have a working knowledge in such areas as design, graphics, communications, hardware and software advances, etc. Consequently, college students majoring in non-technical disciplines are well advised to consider taking advantage of technology-related courses to bolster their skills, knowledge, and awareness in any of these areas. In order to provide a structure and formal recognition towards this end, the School of Engineering and Computer Science offers a Minor in Technology.

Minor in Technology Requirements
Students must complete a minimum of 20 units and 5 courses with a Pacific minor grade point average of 2.0 in order to earn a minor in technology.

1. Students must not major in engineering.
2. Students must complete a program that consists of a minimum of twenty units with a minimum of five courses from the list of approved courses. A minimum of twelve units must be taken at Pacific.
3. Courses towards a minor cannot be taken on a “pass/no credit” basis.
4. Students must maintain a minimum GPA of 2.0 in a minor program.

Course requirements include:
Students must complete a minimum of three courses from the School of Engineering & Computer Science (i.e., CIVL, ECPE, EMGT, ENGR, or MECH department prefixes) which add up to a minimum of eight units. (It is strongly recommended that students take ENGR 010 as one of these three classes. This course is intended for the freshman year.)

Students must take at least one, and no more than two of the “Computing Classes”.

Technology Minor Application: The student submits a Change of Program Form which is available on the registrar’s website.
Approved Courses for the Technology Minor

Engineering Classes

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 015</td>
<td>Civil Engineering Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL 022</td>
<td>Geomatics</td>
<td>3</td>
</tr>
<tr>
<td>CIVL 132</td>
<td>Introduction to Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CIVL 171</td>
<td>Water and Environmental Policy</td>
<td>3</td>
</tr>
<tr>
<td>COMP 041</td>
<td>Great Ideas in Computing</td>
<td>4</td>
</tr>
<tr>
<td>ECPE 041</td>
<td>Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ECPE 041L</td>
<td>Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ECPE 071</td>
<td>Digital Design</td>
<td>2</td>
</tr>
<tr>
<td>ECPE 071L</td>
<td>Digital Design Lab</td>
<td>1</td>
</tr>
<tr>
<td>EMGT 170</td>
<td>Project Decision Making</td>
<td>4</td>
</tr>
<tr>
<td>EMGT 172</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>EMGT 174</td>
<td>Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 010</td>
<td>Dean's Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 020</td>
<td>Engineering Mechanics I (Statics)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 025</td>
<td>Professional Practice Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 181</td>
<td>Professional Practice</td>
<td>1-16</td>
</tr>
<tr>
<td>ENGR 182</td>
<td>Professional Practice</td>
<td>1-18</td>
</tr>
<tr>
<td>ENGR 183</td>
<td>Professional Practice</td>
<td>1-18</td>
</tr>
<tr>
<td>ENGR 184</td>
<td>Professional Practice</td>
<td>1-18</td>
</tr>
<tr>
<td>MECH 015</td>
<td>Mechanical Engineering Graphics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 100</td>
<td>Manufacturing Processes</td>
<td>4</td>
</tr>
</tbody>
</table>

General Technology Classes

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 035</td>
<td>Environment: Concepts and Issues</td>
<td>4</td>
</tr>
<tr>
<td>COMP 041</td>
<td>Great Ideas in Computing</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 035</td>
<td>Environmental Ethics</td>
<td>4</td>
</tr>
<tr>
<td>RELI 146</td>
<td>Technology, Ethics, and Religion</td>
<td>4</td>
</tr>
</tbody>
</table>

Computing Classes

Select at least one and no more than two of the following: 3-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSI 100</td>
<td>Management Information Systems</td>
<td></td>
</tr>
<tr>
<td>COMP 025</td>
<td>Computers and Information Processing</td>
<td></td>
</tr>
<tr>
<td>COMP 051</td>
<td>Introduction to Computer Science</td>
<td></td>
</tr>
<tr>
<td>ENGR 019</td>
<td>Computer Applications in Engineering</td>
<td></td>
</tr>
<tr>
<td>MCOM 019</td>
<td>Music and Computer Technology</td>
<td></td>
</tr>
</tbody>
</table>

Basic Math and Science Classes

Select no more than two of the following: *

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 024</td>
<td>Fundamentals of Chem</td>
<td></td>
</tr>
<tr>
<td>CHEM 025</td>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>MATH 041</td>
<td>Pre-calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 045</td>
<td>Introduction to Finite Mathematics and Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 051</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 053</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 055</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>PHYS 053</td>
<td>Principles of Physics I</td>
<td></td>
</tr>
</tbody>
</table>

* These courses serve as prerequisites for some of the above courses.

Courses are numbered in accordance with the general University system.

Courses labeled “ENGR” are intended for all engineering students, while courses labeled “BENG,” “CIVL,” “ECPE,” “EMGT” or “MECH” are primarily intended for majors in the Bioengineering, Civil (CE), Electrical and Computer (ECE), Engineering Management (EMGT), and Mechanical (ME) departments. Courses labeled “COMP” are taught in the Computer Science Department.

All engineering and computer science course prerequisites must be passed with a C- or higher grade.

* Fundamental skills are a prerequisite to all upper-division engineering and computer science courses.

* Note: Transfer courses must be graded C or better.

Minor in Structural Engineering

The minor in Structural Engineering is intended for students in engineering who desire additional knowledge in the structural or geotechnical engineering areas and whose current major is complementary to these topics.

The minor in Structural Engineering is not open to students pursuing the Civil Engineering degree.

Minor in Structural Engineering Requirements

Students must complete a minimum of 20 units and 5 courses with a Pacific minor grade point average of 2.0 in order to earn a minor in structural engineering. At least 10 units must be taken at Pacific.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 100</td>
<td>Introduction to Structural Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 121</td>
<td>Mechanics of Materials</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following: *

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 164</td>
<td>Structural Timber Design</td>
<td></td>
</tr>
<tr>
<td>CIVL 165</td>
<td>Structural Steel Design</td>
<td></td>
</tr>
<tr>
<td>CIVL 166</td>
<td>Reinforced Concrete Design</td>
<td></td>
</tr>
</tbody>
</table>

Select at least two of the following: 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 140</td>
<td>Introduction to Geotechnical Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVL 141</td>
<td>Earth Structure Design</td>
<td></td>
</tr>
<tr>
<td>CIVL 145</td>
<td>Engineering Geology</td>
<td></td>
</tr>
<tr>
<td>CIVL 151</td>
<td>Heavy Construction Methods</td>
<td></td>
</tr>
<tr>
<td>CIVL 160</td>
<td>Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>CIVL 163</td>
<td>Introduction to Earthquake Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVL 164</td>
<td>Structural Timber Design</td>
<td></td>
</tr>
<tr>
<td>CIVL 165</td>
<td>Structural Steel Design</td>
<td></td>
</tr>
<tr>
<td>CIVL 166</td>
<td>Reinforced Concrete Design</td>
<td></td>
</tr>
<tr>
<td>CIVL 173</td>
<td>Sustainable Engineering</td>
<td></td>
</tr>
<tr>
<td>ENGR 110</td>
<td>Instrumentation and Experimental Methods</td>
<td></td>
</tr>
<tr>
<td>MECH 129</td>
<td>Vibrations</td>
<td></td>
</tr>
</tbody>
</table>

* Up to three units related independent study, undergraduate research, or senior project may be used to meet requirements of the minor.

Minor in Environmental Engineering

The minor in Environmental Engineering is intended for students in engineering who desire additional knowledge in the environmental or water resources engineering areas and whose current major is complementary to these topics.

The minor in Environmental Engineering is not open to students pursuing the Civil Engineering degree.
Minor in Environmental Engineering Requirements

Students must complete a minimum of 20 units and 5 courses with a Pacific minor grade point average of 2.0 in order to earn a minor in environmental engineering. At least 10 units must be taken at Pacific.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 060</td>
<td>Water Quality</td>
<td>4</td>
</tr>
<tr>
<td>CIVL 130</td>
<td>Fluid Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>CIVL 130L</td>
<td>Fluid Mechanics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CIVL 132</td>
<td>Introduction to Environmental Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Select at least two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENG 130</td>
<td>Biotransport</td>
</tr>
<tr>
<td>CIVL 133</td>
<td>Water Resources Engineering</td>
</tr>
<tr>
<td>CIVL 134</td>
<td>Groundwater</td>
</tr>
<tr>
<td>CIVL 136</td>
<td>Design of Water Quality Control Facilities</td>
</tr>
<tr>
<td>CIVL 138</td>
<td>Solid Waste Systems Design and Management</td>
</tr>
<tr>
<td>CIVL 171</td>
<td>Water and Environmental Policy</td>
</tr>
<tr>
<td>CIVL 173</td>
<td>Sustainable Engineering</td>
</tr>
<tr>
<td>MECH 155</td>
<td>Solar Energy Engineering</td>
</tr>
</tbody>
</table>

* Up to three units related independent study, undergraduate research, or senior project may be used to meet requirements of the minor.

Bioengineering Courses

BENG 005. Introduction to Bioengineering. 2 Units.
This course introduces students to the various sub-disciplines (medical, chemical, electrical, and mechanical) of bioengineering. Prerequisite may be taken concurrently. ENGR 010 with a "C-" or better.

BENG 053. General Biology with Applications for Engineers I. 3 Units.
This is the first of a two semester general biology course for engineering students. This course focuses primarily on evolution, plant and animal diversity and ecology. Laboratory activities are integrated into the lecture and are used to reinforce course content with experiential activities and the application of biological principles to an engineering context.

BENG 063. General Biology with Applications for Engineers II. 4 Units.
This is the second of a two semester general biology course for engineering students. This course focuses primarily on metabolism, genetics, and organ systems physiology. A separate laboratory section is used to reinforce course content with experiential activities and the application of engineering techniques used for analysis or control of biological systems.

BENG 103. Biomaterials. 4 Units.
This course discusses biomaterials and lays the groundwork for topics such as mechanical chemical, and thermal properties of replacement materials and tissues. Implantation of materials in the body are studies from the biological point of view. Prerequisites: Completion of all Fundamental Skills; MATH 053; CHEM 025 or CHEM 027; BIOL 061 or BENG 063 with a "C-" or better.

BENG 104. Biomedical Imaging. 4 Units.
This course discusses medical imaging modalities in radiology, including X-ray, CT, nuclear medicine, ultrasound, and MRI. Specific contents include physical principle of each imaging modality; instrumentation and data acquisition/image reconstruction strategy, clinical applications and imaging techniques. Prerequisites: MATH 055, PHYS 055, COMP 051 or ENGR 019.

BENG 108. Engineering Physiology. 4 Units.
This course is a lecture and lab-based study of the major organ systems in the human body. Lectures cover basic anatomy, function and regulation of the nervous, endocrine, sensory, muscular, cardiovascular, respiratory, and excretory systems, with the underlying theme of maintaining homeostasis while responding to physiological disturbances. Lectures also compare each system to abiotic models, and utilize basic principles of physics, math, and chemistry. Lab exercises demonstrate basic physiological processes and emphasize techniques of instrument-based data acquisition and data presentation. Students also create virtual instruments (Vis) that use the program LabVIEW and apply the Vis in a final independent lab project. Prerequisites: Completion of all Fundamental Skills; BIOL 051 or BENG 053; BIOL 061 or BENG 063; CHEM 025 all with a "C-" or better or permission of instructor.

BENG 124. Biomechanics. 4 Units.
This course discusses concepts of engineering mechanics including stress, strain, deformation, and analysis of structures with application to biomechanical phenomena over a range of biological length scales. Engineering mechanics concepts are used to evaluate forces and moments acting on human joints, forces in musculoskeletal tissue, material properties of biological tissues, and disease state conditions. Prerequisites: Completion of all Fundamental Skills; ENGR 020 with a "C-" or better. Prerequisite may be taken concurrently. MATH 057 with a "C-" or better.

BENG 130. Biotransport. 4 Units.
This course focuses on momentum transport (viscous flow) and mass transport (diffusion and convection) in living systems. The fundamental principles of momentum and mass transfer are explored and laws of conservation applied to develop mathematical descriptions of physiological and engineering systems across a range of length scales. Students develop technical writing skills and learn to use computation fluid dynamics simulation tools. Prerequisites: Completion of all Fundamental Skills; MATH 057; PHYS 053 with a "C-" or better.

BENG 140. Introduction to Tissue Engineering. 4 Units.
Tissue engineering is a multidisciplinary and collaborative field that applies the principles of engineering and biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In this course, there will be an overview of tissue engineering, including discussion of cell sources, cell-material interactions, and assessment of engineering outcome through destructive and nondestructive means with case studies of specific types of tissue engineering including skin, bone, cartilage, bladder, and liver. Finally, ethical standards for different techniques in tissue engineering will be discussed. Prerequisites: Completion of all Fundamental Skills; BIOL 061; BENG 103 all with a "C-" or better or permission of instructor.

BENG 154. Introduction to Magnetic Resonance Imaging. 4 Units.
Introduction to the physics, techniques, and applications of magnetic resonance imaging (MRI) in basic sciences and the clinic. Basics of nuclear magnetic resonance physics, and Fourier transform, MRI hardware, and MR imagining principles including signal generation, detection, and spatial localization techniques. Applications of MRI including tissue relaxometry measurement and diffusion weighted imaging of biological tissues, imagining of anatomy, and function. Prerequisites: Completion of all Fundamental Skills; BENG 104 with a "C-" or better or permission of instructor.
BENG 171. Bioelectricity. 4 Units.
This course provides the student with an understanding of the origins, function, and measurement of electrical potentials and currents within biological tissues, such as nerve, muscle, and heart. Topics include: the bioelectrical properties of ion channels, neurons, the synapse and neuromuscular junction, adaptation and learning in small networks of neurons, the functional organization of bioelectrical systems, and bioelectrical measurement and stimulation of tissues such as the heart and brain. Prerequisites: Completion of all Fundamental Skills; BIOL 061 or BENG 063; ECPE 041/ECPE 041L; MATH 055 all with a "C-" or better or permission of instructor.

BENG 191. Independent Study. 1-4 Units.
Special individual projects are undertaken under the direction of one or more faculty members who are knowledgeable in the particular field of study. Permission of department chairperson and faculty members involved.

BENG 194. Bioengineering Project Proposal. 3 Units.
This course provides an introduction to the engineering design process. Students apply basic sciences, mathematics, and engineering topics to meet a stated objective. Students will write a proposal for a comprehensive design project, in which they establish design objectives and criteria, analyze solution alternatives, and synthesize a problem. Consideration for engineering standards, realistic constraints, ethics, and safety is included. Prerequisite: Completion of all Fundamental Skills, Junior or Senior standing. BENG 124 and BENG 103, may be taken concurrently, with a "C-" or better or permission of instructor.

BENG 195. Senior Project. 3 Units.
In this course, students will complete the engineering design process. Students will design and evaluate an engineering solution to an existing problem. Students apply basic sciences, mathematics and engineering topics to implement a solution that meets stated design objectives and criteria. Students will also test prototypes to evaluate design performance. Design documentation and demonstration are required. Includes both written and oral reports and presentations. Prerequisite may be taken concurrently: BENG 194 with a "C-" or better or permission of instructor.

BENG 197. Undergraduate Research. 1-4 Units.
This course is applied or basic research in bioengineering under faculty supervision. Permission of faculty supervisor and department chair. Students must be in good academic standing.

BENG 197D. Undergraduate Research. 1-4 Units.

Civil Engineering Courses

CIVL 015. Civil Engineering Graphics. 3 Units.
Coverage of the principles and applications of graphics in engineering design. Pictorial and isometric sketching and orthogonal projection and use of auxiliary views and sections are used. Drafting standards and conventions, dimensioning and tolerances. Layout and assembly drawings, detail drawings and production drawings using AutoCAD software. Laboratory work is included. Prerequisite may be taken concurrently: ENGR 010 with a "C-" or better.

CIVL 022. Geometrics. 3 Units.
This course is an introduction to geomatics engineering which includes in depth coverage of plane surveying and an introduction to Global Navigation Satellite Systems (GNSS), geodetics and geospatial sciences. Fundamental surveying methods and equipment will be presented in both a lecture and a hands-on laboratory section. Topics include: error theory, leveling, traverse computations, topography, coordinate systems, construction surveying, geometric design, Global Navigation Satellite Systems (GNSS), photogrammetry and the presentation of other emerging and relevant technologies. Prerequisite: MATH 041 with a "C-" or better or passing score on the University's trigonometry placement test.

CIVL 060. Water Quality. 4 Units.
Students examine chemical reactions and processes in aquatic systems with engineering applications. Topics include chemical equilibrium and kinetics associated with acid-base, dissolution-precipitation, complexation, and reduction-oxidation reactions in natural and engineered environments. Laboratory work is included. Prerequisites: CHEM 024 or CHEM 025 or CHEM 027; and MATH 051 with a "C-" or better. (ENST)

CIVL 100. Introduction to Structural Engineering. 4 Units.
Introduction to the theory and applications of structural analysis and design. Topic include: determination of loads, analysis of beams, trusses and frames, influence line and indeterminate structures. Prerequisites: Completion of all Fundamental Skills, CIVL 015, ENGR 019, ENGR 121 with a "C-" or better (Spring).

CIVL 130. Fluid Mechanics I. 3 Units.
Students study the physical properties of fluids, statics and dynamics of incompressible fluids that include hydrostatics, conservation of mass, energy and momentum principles, laminar and turbulent flow with emphasis on pipe flow. Prerequisite: Completion of all Fundamental Skills and ENGR 120 with a "C-" or better. Corequisite: CIVL 130L

CIVL 130L. Fluid Mechanics I Lab. 1 Unit.
Experimental analysis of concepts are discussed in CIVL 130. Prerequisite: Completion of all Fundamental Skills and ENGR 120 with a "C-" or better. Corequisite: CIVL 130.

CIVL 132. Introduction to Environmental Engineering. 4 Units.
Students are introduced to the physical, chemical, and biological processes associated with water quality in natural environments and engineering systems. Topics include operation and design of water and wastewater treatment facilities as well as the occurrence, behavior and control of indoor and regional air pollution. Laboratory is included. Prerequisites: Completion of all Fundamental Skills, CIVL 015, CIVL 060 with a "C-" or better.

CIVL 133. Water Resources Engineering. 4 Units.
Students examine hydraulic analysis and design that include pipe flow and open channel flow. Topics include elements of the hydrological cycle, deterministic and probabilistic analysis of rainfall-runoff data for estimation and design, and the application of computers in hydrologic and hydraulic design. Laboratory is included. Prerequisites: Completion of all Fundamental Skills, CIVL 015, CIVL 130 with a "C-" or better.

CIVL 134. Groundwater. 4 Units.
Aquifer properties, groundwater hydraulics in confined and unconfined aquifers under steady and unsteady flow conditions. Well hydraulics under ideal and non-ideal conditions. Constituent transport and fate in groundwater. Prerequisites: Completion of all Fundamental Skills; CIVL 130; MATH 057 with a "C-" or better.
CIVL 136. Design of Water Quality Control Facilities. 4 Units.
This advanced course covers the physical, chemical, and biological processes that are involved in the design of water and wastewater treatment plant facilities as well as applicable design standards and regulations. Prerequisites: Completion of all Fundamental Skills, CIVL 130, CIVL 132 with a "C-" or better.

CIVL 138. Solid Waste Systems Design and Management. 3 Units.
This is an introductory course to solid waste systems, that analyzes problems associated with storage, collection, transport, processing, and disposal of solid wastes. Students review current and expected regulatory requirements and the planning and design of solid waste management components that include systems and processes for solid waste prevention, recycling/composting, incineration, and landflling. Prerequisite: Completion of all Fundamental Skills and CIVL 132 with a "C-" or better.

CIVL 140. Introduction to Geotechnical Engineering. 4 Units.
This introductory course covers the fundamentals of geotechnical engineering, that includes the characterization of soils and their behavior as an engineering material. Topics, include classification of soils, compaction, permeability, and consolidation. Also covered is design applications that include settlement predictions, strength characterization, soil exploration programs, and an overview of shallow and deep foundations. The course includes laboratory work. Prerequisites: Completion of all Fundamental Skills, CIVL 015, ENGR 121 with a "C-" or better.

CIVL 141. Earth Structure Design. 4 Units.
Evaluation of drained and undrained field conditions and the relationship between temporary and permanent design conditions over time. In-situ tests, including SPT and CPT. Analysis of lateral stresses in soil masses. Design of slopes, cantilever retaining walls, sheet piles, anchored bulkheads, and mechanically-stabilized earth walls. Design includes analysis of effects of water and seismic conditions, including liquefaction. Prerequisite: CIVL 140.

CIVL 145. Engineering Geology. 4 Units.
This introductory course to is the study of geology in which geologic principles, data and techniques are applied to civil engineering problems. Also listed as GEOS 145. Prerequisites: Completion of all Fundamental Skills; GEOS 051 or GEOS 061 or CIVL 140 with a "C-" or better.

CIVL 150. Transportation Engineering. 4 Units.
Students study the considerations and procedures in the planning, design, and operation of various transportation systems with primary emphasis on highways. Prerequisites: Completion of all Fundamental Skills. Junior or Senior standing.

CIVL 151. Heavy Construction Methods. 4 Units.
An introduction to the areas of construction engineering and construction management. Construction engineering topics include construction processes and construction econometrics. Construction management topics include contracting, estimating, planning, bidding, and scheduling. Prerequisite: Completion of all Fundamental Skills. Junior or Senior standing.

CIVL 160. Structural Analysis. 3 Units.
Students analyze the behavior of trusses and framed structures under gravity and lateral loads. Other topics include analysis of shear walls, the use of structural analysis software, and the buckling of frames. Prerequisites: Completion of all Fundamental Skills; CIVL 100 and MATH 057 with a "C-" or better.

CIVL 163. Introduction to Earthquake Engineering. 3 Units.
Determination of loads on structures due to earthquakes. Overview of seismology. Methods of estimating equivalent static lateral forces; response spectrum and time history analysis. Concepts of mass, damping and stiffness for typical structures. Design for inelastic behavior. Numerical solutions and code requirements. Prerequisites: Completion of all Fundamental Skills, ENGR 019, ENGR 121 with a "C-" or better.

CIVL 164. Structural Timber Design. 4 Units.
Students will study the design of timber structural members, specifically tension, compression, flexural, and beam-column elements and connections to satisfy design code requirements. Prerequisite: Completion of all Fundamental Skills. Prerequisite may be taken concurrently: CIVL 100.

CIVL 165. Structural Steel Design. 4 Units.
Students study the design of steel structural members, specifically tension, compression, flexural, and beam-column elements and connections to satisfy design code requirements. Prerequisite: Completion of all Fundamental Skills. Prerequisite may be taken concurrently: CIVL 100 with a "C-" or better.

CIVL 166. Reinforced Concrete Design. 4 Units.
Students study the design and proportioning of structural members, specifically beams, columns, one-way slabs, footings, and walls to satisfy design criteria for reinforced concrete systems. Prerequisite: Completion of all Fundamental Skills. Prerequisite may be taken concurrently: CIVL 100 with a "C-" or better.

CIVL 171. Water and Environmental Policy. 3 Units.
This course introduces students to Federal and State of California environmental regulations pertaining to air, water, hazardous wastes, and toxic substances. Topics include an overview of water rights and environmental impact assessment, relevant case studies, and examples of monitoring and enforcement issues. Prerequisite: Completion of all Fundamental Skills. Junior or Senior standing. (ENST)

CIVL 173. Sustainable Engineering. 3 Units.
This interdisciplinary course provides an introduction to principles and practice of sustainable engineering. Topics include the analysis of economic, social, and environmental factors, life cycle assessment, resource use and waste generation in engineering products and processes. The course also examines case studies, readings, and class discussion emphasizes analysis and development of sustainable solutions. Prerequisite: Completion of all Fundamental Skills. Junior or Senior standing.

CIVL 180. Engineering Synthesis. 4 Units.
This course is a culminating experience wherein a group of students synthesize their previous class work into one project. Both technical and non-technical concerns are addressed. One or more faculty members and/or professional engineers are involved depending upon the fields covered in the project. Prerequisites: Completion of all Fundamental Skills; EMGT 170 and 2 of the following: CIVL 100, CIVL 132, CIVL 133, CIVL 140 with a "C-" or better. Senior standing.

CIVL 191. Independent Study. 1-4 Units.
Students undertake special individual projects under the direction of one or more faculty members. Permission of department chairperson and faculty member involved.

CIVL 193. Special Topics. 4 Units.
Upper division elective subject area based on expertise of faculty members.
CIVL 197. Undergraduate Research. 1-4 Units.
This course is applied or basic research in civil engineering under faculty supervision. Permission of faculty supervisor and department chair.
Student must be in good academic standing.

Computer Science Courses
COMP 025. Computers and Information Processing. 4 Units.
This introductory information technology course focuses on computer architecture, networking, internet technologies and the integration of productivity software. Lectures, readings, hands-on projects and lab assignments give a variety of learning experiences. Specific topics include computer architecture, digital data, networking, file management, spreadsheets, database systems and presentation applications. Students are exposed to JavaScript and Visual Basic scripting. Particular emphasis is placed on HTML programming and creating an interactive student website for homework and lab linking throughout the semester. Prerequisite: Fundamental Math Skills requirement. (GE3B)

COMP 041. Great Ideas in Computing. 4 Units.
This course is a broad introduction to the field of computing. The concepts that are the foundation of computing are presented and placed in historical context. Discussion topics include the ways of thinking and working that make computing effective, and the future of the field. Example topics include number representation, architecture of computing systems, intelligent computing systems, and the use of computing in art and games. Prerequisite: Fundamental Math Skills requirement. (GE3C)

COMP 047. Discrete Math for Computer Science. 4 Units.
This course is designed to develop skills in deductive reasoning and to apply concepts of discrete mathematics to computer science. Topics include logic, deductive reasoning, mathematical induction, set theory, functions, recurrence relations, combinatorics and probability, graphs, trees, and Boolean Algebra. Prerequisite: Fundamental Math Skills requirement. (Spring, every year). (GE3B)

COMP 051. Introduction to Computer Science. 4 Units.
The course emphasizes program design and problem solving techniques that use a high-level programming language. The course introduces basic concepts such as assignment, control flow, iteration, and basic data structures in addition to a supervised lab. Credit for this course is not given if a student has credit for COMP 061. Prerequisite: Fundamental Math Skills requirement. (GE3B)

COMP 053. Data Structures. 4 Units.
The course continues the development of program design and problem solving techniques. Topics include development of fundamental data structures and their associated algorithms as well as array-based algorithms, recursion, lists, generics, dynamic memory, binary trees, and associative structures. Prerequisite: COMP 051 or COMP 061 with a "C-" or better. (GE3B)

COMP 055. Application Development. 4 Units.
This course develops the skills and techniques required for the creation of contemporary software applications. Contemporary software applications are complex systems that involve the interaction of multiple subsystems that require teams of developers working together for extended periods of time. Topics include teamwork and communication skills, current development methodologies, analysis and design documentation and the use of libraries. This course is intended to prepare students to transition to upper division courses. Prerequisites: Completion of all Fundamental Skills and COMP 053 with a "C-" or better. (Fall, every year). (GE3B)

COMP 061. Introduction to Programming for Data Science. 4 Units.
This course introduces programming concepts and program design using topics in data science as examples. Basic concepts such as assignment, control flow, iteration, and simple as well as object-oriented data types and structures are developed. The course includes a supervised lab. Credit for this course is not given if student has credit for COMP 051. Prerequisite: Fundamental Math Skills requirement. (GE3B)

COMP 093. Special Topics. 3 or 4 Units.
COMP 127. Web Applications. 4 Units.
The World-Wide Web consists of client-server applications operating over the Internet. This course introduces the skills and techniques for designing and developing web applications. Topics include: client-server architectures, web servers and web browsers, server-side programming, client-side programming, form processing, state management and multimedia. Prerequisites: Completion of all Fundamental Skills and COMP 053 with a "C-" or better or permission of instructor. (Fall, even years).

COMP 129. Software Engineering. 4 Units.
Students gain practical experience in dealing with medium to large scale software systems. Students learn how current analysis and design methodologies are used to develop the abstractions necessary to understand large systems. Students also learn how such methodologies and abstractions are used to communicate with coworkers and clients about the analysis and design. Because communication is an essential skill in large system development, students are expected to produce documents and presentations of professional quality and depth. Prerequisites: Completion of all Fundamental Skills and COMP 055 with a "C-" or better. (Spring, odd years).

COMP 135. Human-Computer Interface Design. 3 Units.
Human-Computer Interface (HCI) Design focuses on the relationship between humans and computers or other physical devices. This course helps students develop an understanding of the common problems in designing these interfaces and presents a set of design techniques to ensure that designs are both useful and useable. Prerequisite: Completion of all Fundamental Skills. Junior standing. (Spring, odd years).

COMP 137. Parallel Computing. 3 Units.
Parallel computing is a science which solves a large problem by giving small parts of the problem to many computers to solve and then combining the solutions for the parts into a solution for the problem. This course introduces architectures and implementation techniques to support parallel computation. Students are expected to design and implement an original parallel application as a term project. Prerequisite: Completion of all Fundamental Skills and COMP 053 with a "C-" or better. Corequisite: ECPE 170. (Spring, even years).

COMP 141. Programming Languages. 4 Units.
Topics in evaluation, design, and development of programming languages. Topics include type systems, variables and scope, functions, parameter passing, data hiding and abstractions, recursion, memory allocation, grammars and parsing, compiler architecture, programming paradigms, and comparison of programming languages and environments. Prerequisites: Completion of Fundamental Skills and COMP 053 with a "C-" or better. (Spring, every year).

COMP 147. Computing Theory. 4 Units.
Students study automata, formal languages and computability. Topics include finite state automata, regular languages, pushdown automata, context-free languages, Turing machines; decidability, reducibility, and time complexity that includes NP-completeness and intractability. Prerequisites: Completion of all Fundamental Skills; COMP 047 or ECPE 071 or MATH 074 with a "C-" or better. (Fall, every year).
COMP 151. Artificial Intelligence. 3 Units.
Students study fundamental concepts, techniques and tools used in Artificial Intelligence. Topics include knowledge representation, search techniques, machine learning and problem solving strategies. Also listed as ECPE 151. Prerequisites: Completion of all Fundamental Skills and COMP 053 with a "C-" or better. (Fall, odd years).

COMP 153. Computer Graphics. 3 Units.
An introduction to two and three dimensional computer graphics. Basic representations and mathematical concepts, object modeling, viewing, lighting and shading. Programming using OpenGl and other computer graphics applications. Also listed as ECPE 153. Prerequisites: Completion of all Fundamental Skills and COMP 053 with a "C-" or better. (Fall, every year).

COMP 155. Computer Simulation. 4 Units.
This course explores digital simulation, in which a model of a system is executed on a computer. The course focuses on modeling methodologies, mathematical techniques for implementing models, and statistical techniques for analyzing the results of simulations. Students develop simulations using both simulation development toolkits and general-purpose programming languages. Also listed as EMGT 155. Prerequisites: Completion of all Fundamental Skills; MATH 037 or MATH 039; MATH 045 or MATH 051, COMP 051 or ENGR 019 with a "C-" or better. (Fall, even years).

COMP 157. Design and Analysis of Algorithms. 4 Units.
Topics for this course include complexity analysis, algorithms for searching, sorting, pattern matching, combinatorial problems, optimization problems, backtracking, algorithms related to number theory, graph algorithms, and the limitations of algorithm power. Prerequisites: Completion of all Fundamental Skills; COMP 047 or MATH 074; COMP 053; MATH 045 or MATH 051 with a "C-" or better. (Fall, every year).

COMP 159. Computer Game Technologies. 4 Units.
This course surveys the technologies and processes used for modern video game development. Course topics include software engineering, media creation and management, hardware interfaces, user interaction, 3D mathematics and common algorithms and data structures to support graphics, physics and artificial intelligence. Prerequisite: Completion of all Fundamental Skills and COMP 055 with a "C-" or better. (Fall, odd years).

COMP 162. Data Analytics Programming. 4 Units.
This course develops programming skills for computational data analysis. The course emphasizes programming for statistical analysis, machine learning and predictive modeling. Other topics include programming packages for handling, preparation, and manipulation of data, as well as visualization tools for exploration and presentation of data and results. The course emphasizes hands-on data and analysis using a variety of real-world data sets and analytical objectives. Prerequisites: Completion of all Fundamental Skills; COMP 051 or COMP 061.

COMP 163. Database Management Systems. 4 Units.
A database management system (DBMS) is a computer application designed for the efficient and effective storage, access and update of large volumes of data. This course looks at such systems from two perspectives. The user-center perspective focuses on how a DBMS is used to build support for a data intensive application. This perspective includes examination of common data models, query languages and design techniques. The system implementation perspective focuses on the policies, algorithms and data structures used to design and implement a DBMS. Prerequisites: Completion of all Fundamental Skills and COMP 053 with a "C-" or better. Corequisite: COMP 047 or MATH 074. (Spring, even years).

COMP 173. Operating Systems. 4 Units.
Students are introduced to the fundamental concepts of modern operating systems. Topics include an overview of the computer hardware that supports the operating system, process management, threads, and CPU scheduling. Students also study process synchronization that uses primitive and high-level languages, virtual memory management, file systems, system protection, and distributed systems. Prerequisites: Completion of all Fundamental Skills; COMP 053 and ECPE 170 with a "C-" or better or permission of instructor. (Fall, every year).

COMP 175. System Administration and Security. 3 Units.
Students are introduced to an operating system from an administrator's standpoint. Topics include installation with the proper allocation of disk resources, maintaining the operating system and various subsystems, security issues that include server hardening, host firewalls and network security issues. Students also study account administration in a networked environment, change management and intrusion detection. Prerequisites: Completion of all fundamental skills and familiarity with console-based operating systems commands. Junior standing. (Fall, every year).

COMP 177. Computer Networking. 4 Units.
Topics examined in this course include computer networks and the Internet, LAN and WAN architectures, and packet switched networks and routing. Students learn about the 7-layer OSI model and internet protocol stack, socket programming and client/server systems, wireless and security. The course includes a laboratory. Also listed as ECPE 177. Prerequisites: Completion of all Fundamental Skills; COMP 053 and ECPE 170 with a "C-" or better. Junior or Senior standing. (Fall, every year).

COMP 178. Computer Network Security. 3 Units.
This course is an examination of the pervasive security threats related to the Internet, data communications and networking. Topics include TCP/IP protocols, authentication, encryption, malware, cybercrime, and social engineering. Emphasis is on computer and network attack methods, their detection, prevention and analysis, and the integration of the tools and techniques employed in this effort. Includes lab. Prerequisites: Completion of all Fundamental Skills and ECPE 170 or COMP 175 with a "C-" or better. (Spring, every year).

COMP 187. Internship in Computer Science. 1-4 Units.
This internship course offers cooperative employment in a professional computer science environment. The internship requires satisfactory completion of the work assignment and written reports. Prerequisites: Completion of all Fundamental Skills; COMP 055 and ENGR 025 with a "C-" or better. Grading is Pass/No Credit only.

COMP 191. Independent Study. 1-4 Units.
Students create student-initiated projects that cover topics not available in regularly scheduled courses. A written proposal that outlines the project and norms for evaluation must be approved by the department chairperson.

COMP 195. CS Senior Project. 4 Units.
In this course, students synthesize their cumulative computer science knowledge through the development of a computer application. Students will establish design objectives and criteria, analyze solution alternatives and evaluate design performance. Students will then implement, test and evaluate the system. Results will include analysis and design documents, the implemented system, test reports and a presentation and demonstration of the project. Prerequisites: Completion of all Fundamental Skills, Senior Standing, COMP 055 with a "C-" or better.
COMP 197. Undergraduate Research. 1-4 Units.
Students conduct supervised research that contributes to current active topics in Computer Science. Topics may be selected by the student, related to faculty research, or provided by industrial sponsors. Permission of Undergraduate Research Coordinator.

Electrical Engr Courses
ECPE 005. Introduction to Electrical and Computer Engineering. 1 Unit.
This course introduces students to various sub-disciplines of Electrical and Computer Engineering and to the tools, both hardware and software, that are used in Electrical & Computer Engineering. Prerequisite: ENGR 010 with a "C-" or better.

ECPE 041. Circuits. 3 Units.
Students study concepts of voltage, current, power, energy. Topics include ideal circuit elements and their I/V characteristics, Kirchhoff's laws, circuit analysis using node voltage and mesh current methods Thevenin's and Norton's theorems, maximum power transfer, and operational amplifier circuits. The course examines step response of 1st order (RC, RL) and 2nd order (RLC) circuits, phasor analysis, impedance calculations, sinusoidal steady state response, instantaneous, average, and reactive power, frequency response, bandwidth of first order, and lowpass and highpass filters. Prerequisite: PHYS 055; MATH 055; COMP 051 or ENGR 019 with a "C-" or better. Corequisite: ECPE 041L.

ECPE 041L. Circuits Laboratory. 1 Unit.
Students study the use of standard test equipment to make DC and AC measurements and characterize electric circuits. Circuit simulation is taught with software tools, and data analysis is emphasized. Corequisite: ECPE 041.

ECPE 071. Digital Design. 3 Units.
Students study number systems, binary arithmetic, and Boolean logic. Topics include the analysis and synthesis of combinational and sequential circuits and the use of MSI, LSI, FPGA and CPLD devices. Prerequisite: Fundamental Math Skills requirement; COMP 051 or ENGR 019 with a "C-" or better. Recommended: ECPE 071L.

ECPE 071L. Digital Design Lab. 1 Unit.
This course involves laboratory treatment of the concepts discussed in ECPE 071. Prerequisites: Fundamental Math Skills requirement; COMP 051 or ENGR 019 with a "C-" or better. Corequisite: ECPE 071.

ECPE 121. Digital Signal Processing. 4 Units.
Students analyze discrete-time signals and systems using z transforms and Fourier transforms, the fast Fourier transform and its applications, digital filters and their applications and implementation of DSP algorithms using Matlab and Simulink. Prerequisites: ECPE 041 and MATH 057 with a "C-" or better.

ECPE 124. Digital Image Processing. 4 Units.
This course is the analysis and design of algorithms in digital image processing. Topics include: image formation, file format, pixel-based processing, object recognition, filtering and edge detection, image transforms, segmentation, stereo-vision, and motion tracking. Prerequisites: COMP 053, ECPE 121 with a "C-" or better.

ECPE 127. Random Signals. 3 Units.
This course is an introduction to probability and statistics in engineering applications. Students will become familiar with discrete and continuous random variables and their probability models. Topics include counting methods, reliability problems, probability mass functions (PMF), probability density functions (PDF), cumulative distribution functions (CDF), conditional PDF's, expected value and variance, joint and marginal PDF's and CDF's, functions of two random variables. Prerequisites: Completion of all Fundamental Skills, MATH 055 with a "C-" or better.

ECPE 131. Electronics. 3 Units.
This course introduces students to semiconductor physics. Topics include modeling, analysis, and simulation of analog and digital circuits containing diodes, bipolar junction transistors, and MOSFETs. Other topics include analysis and design of single stage amplifiers, frequency response of amplifiers, gain, bandwidth, DC biasing, and small signal analysis of amplifiers. Prerequisites: Completion of all Fundamental Skills; ECPE 041, ECPE 041L, ECPE 071, ECPE 071L; MATH 055, PHYS 055, completion of CHEM 024 or CHEM 025 or CHEM 027 or BIOL 051 or BIOL 061 or BENG 053 or BENG 063 with a "C-" or better. Prerequisite that may be taken concurrently: ECPE 071, ECPE 071L Corequisite: ECPE 131L.

ECPE 131L. Electronics Lab. 1 Unit.
Students examine the use of standard electronic test equipment and simulation tools to analyze, design, and test electronic circuits. Emphasis on analog circuits. Prerequisites: Completion of all Fundamental Skills. Corequisite: ECPE 131.

ECPE 133. Solid State Devices. 4 Units.
This course introduces concepts related to the crystal structure of semiconductors and electronic, optical, and magnetic properties of semiconductors. Dynamics of carriers under equilibrium and non-equilibrium conditions are presented as a frame work for understanding the behavior of a number of devices including Metal-Oxide-Semiconductor (MOS) and Hetero-junction Bipolar (HBT) devices. On such a background, the course builds an understanding of the latest advances in the field. This course is cross listed with EPHY 133 and PHYS 170. Prerequisite: MATH 057, PHYS 055 with a "C-" or better.

ECPE 135. Power Electronics. 4 Units.
Switch-Mode DC-DC converters, Feedback control of converters, Rectifiers and power factor correction circuits, switch mode DC power supplies, applications to motor control and renewable energy integration to the grid. Includes laboratory. Prerequisites: Completion of all Fundamental Skills; ECPE 131 and ECPE 131L with a "C-" or better. Prerequisite may be taken concurrently: ECPE 121 with a "C-" or better.

ECPE 136. VLSI Design. 4 Units.
Students examine issues in VLSI design. Topics include logic families, sizing, timing models, fabrication, layout, high speed and low power design tradeoffs, circuit simulation and device modeling. Prerequisites: Completion of all Fundamental Skills; ECPE 071, ECPE 071L, ECPE 131, ECPE 131L with a "C-" or better. (Spring odd years).

ECPE 141. Advanced Circuits. 4 Units.
Analysis and design of circuits in the continuous time domain. Topics include: frequency response, Laplace transforms, Fourier transforms, stability and feedback. Applications include high-order filter design and controls. Prerequisites: ECPE 041, ECPE 041L, and MATH 057 with a "C-" or better.

ECPE 144. Applied Electromagnetics. 4 Units.
The purpose of this course is for students to gain an understanding of transmission lines and field theory as it applies to communication circuits and systems. Electromagnetic wave propagation, reflection, and transmission through common materials are examined. This course is cross listed with EPHY 144. Prerequisites: Completion of all Fundamental Skills; PHYS 055, MATH 057, ECPE 041 with a "C-" or better.

ECPE 155. Autonomous Robotics. 4 Units.
This course is an overview of the design of autonomous robotics. Students study architectures for robot organization and control, configurations of fixed and mobile robots, sensors and actuators. Students also study the design of algorithms and knowledge representations. Prerequisites: Completion of all Fundamental Skills; COMP 053 and ECPE 172 with a "C-" or better or permission of instructor.
ECPE 161. Automatic Control Systems. 4 Units.
Students study component and system transfer functions, open and closed loop response; stability criteria; applications to engineering systems. This course includes a laboratory. Prerequisites: Completion of all Fundamental Skills and ECPE 121 with a "C-" or better.

ECPE 162. Communication Systems. 4 Units.
Students examine signal characterization in time and frequency domains. Topics include baseband communication, pulse code modulation, multiplexing, complex envelope representation of bandpass signals, AM, FM, and digital modulations. Students also examine applications to radio, television, telephone, and cellular phone systems. A laboratory is included. Prerequisites: Completion of all Fundamental Skills and ECPE 121 with a "C-" or better. (Spring).

ECPE 163. Energy Conversion. 4 Units.
Students study three phase power systems. Topics include magnetic circuits, transformers, rotating machines: DC, induction, and synchronous machines as well as equivalent circuits and characteristic curves of transformers and rotating machines, renewable energy sources and technologies. The course includes a laboratory. Prerequisites: Completion of all Fundamental Skills; ECPE 041 and ECPE 041L; PHYS 055 with a "C-" or better.

ECPE 165. Power System Analysis. 3 Units.
Students study electrical power generation and transmission, Three-phase systems, power system component models, per-unit system and single line diagrams, power flow analysis. Prerequisites: Completion of all Fundamental Skills and ECPE 041 with a "C-" or better. Junior standing.

ECPE 170. Computer Systems and Networks. 4 Units.
This course is a comprehensive and holistic examination of the modern computing environment. Students gain an understanding of the various hardware and software components that enable computers and networks to process information and execute applications. Students learn to apply this knowledge in the development of efficient and robust software applications. Prerequisites: Completion of all Fundamental Skills; ECPE 071, COMP 053 with a "C-" or better.

ECPE 172. Microcontrollers. 4 Units.
Students study the design and implementation of digital monitoring and control systems that use micro-controllers. Topics include hardware and software development, interfacing input and output devices, assembly and C programming as well as representative applications. The course includes a laboratory. Prerequisites: Completion of all Fundamental Skills; ECPE 071 and ECPE 071L with a "C-" or better.

ECPE 173. Computer Organization and Arch. 3 Units.
The objective of this course is to give students an understanding of how a complete modern computer system operates. Students learn about design of control, datapath and arithmetic-logic units. Other topics include pipelining, memory hierarchy and assembly language programming. Prerequisites: Completion of all Fundamental Skills; ECPE 170; ECPE 172 or ECPE 174 with a "C-" or better.

ECPE 174. Advanced Digital Design. 4 Units.
Students learn how to analyze, design, and implement synchronous state machines using programmable logic devices. Topics include CAD-based simulation and development that use schematic capture and hardware description languages, and representative applications. The course includes a laboratory. Prerequisites: Completion of all Fundamental Skills; ECPE 071 and ECPE 071L with a "C-" or better.

ECPE 177. Computer Networking. 4 Units.
Students study computer networks and the Internet. Topics include LAN and WAN architectures, packet switched networks and routing, the 7-layer OSI model and Internet protocol stack, socket programming and client/server systems as well as wireless security. The course includes a laboratory. Also listed as COMP 177. Prerequisites: Completion of all Fundamental Skills; COMP 053 and ECPE 170 with a "C-" or better. Junior or Senior standing.

ECPE 178. Computer Network Security. 3 Units.
This course is an examination of the pervasive security threats related to the Internet, data communications and networking. Topics include TCP/IP protocols, authentication, encryption, malware, cybercrime, and social engineering. Emphasis is on computer and network attack methods, their detection, prevention and analysis, and the integration of the tools and techniques employed in this effort. Includes lab. Prerequisites: Completion of all Fundamental Skills and ECPE 170 or COMP 175 with a "C-" or better.

ECPE 191. Independent Study. 1-4 Units.
Special individual projects are undertaken under the direction of one or more faculty members knowledgeable in the particular field of study. Permission of department chairperson and faculty members involved.

ECPE 195. Senior Project I. 2 Units.
This first semester capstone design course instructs students in the application of design processes and interdisciplinary teamwork. Student teams select a project and develop requirements, test, and design documents. Projects incorporate consideration of engineering standards and realistic constraints such as economics, the environment, sustainability, manufacturability, or safety. Components are evaluated and selected. Feasibility is analyzed through prototyping or simulation and results are presented via oral and written reports. This course is cross listed with EPHY 195. Prerequisites: Completion of all Fundamental Skills; ECPE 131 and ECPE 131L; ECPE 121, ECPE 141, ECPE 172 or ECPE 174 with a "C-" or better.

ECPE 196. Senior Project II. 2 Units.
This second-semester capstone design course instructs students in the application of design processes and interdisciplinary teamwork. Students learn about design of control, data path and arithmetic logic units. Other topics include pipelining, memory hierarchy and assembly language programming. Prerequisites: Completion of all Fundamental Skills; ECPE 170; ECPE 172 or ECPE 174 with a "C-" or better.

ECPE 197. Undergraduate Research. 1-4 Units.
This course offers applied or basic research in electrical and/or computer engineering under faculty supervision. Permission of faculty supervisor and department chair. The student must be in good academic standing.

Engineering Management Courses
EMGT 115. Building Information Modeling. 4 Units.
This course provides the basics of design, modeling, scheduling, resource allocation, time/cost tradeoffs, task coordination, team-building, progress monitoring, and post project assessment while using the latest BIM technologies. Students study the lean construction and how to integrate BIM into the project delivery processes. Prerequisite: Completion of all fundamental skills.
EMGT 142. Design and Innovation. 3 Units.
This course brings buyers, sellers and end-users of design, prototyping and testing together in an educational and real problem environment. Students will learn how to identify innovation, and develop, design and market new product or service. Students will also learn the nature and importance of technological innovation in commercial organizations with particular reference to bringing a new product or service off the drawing board, through virtual development, and into a modern pre-sales promotional environment in weekly project deliverables. Prerequisite: Upper division standing in engineering.

EMGT 142L. Design and Innovation Lab. 1 Unit.
The laboratory component of EMGT 142, course provides the basics of Industrial Design techniques including drawing, graphical, presentation and design communication skills. Students learn how to design functional objects, sculpture and use a variety of 2D and 3D applications to produce those models as physical objects. A variety of rapid prototyping methods include: 3D Printing, Vacuum Forming, and Laser Cutting is used in weekly project deliverables. Prerequisite: Upper division. Corequisite: EMGT 142.

EMGT 155. Computer Simulation. 4 Units.
This course explores digital simulation in which a model of a system is implemented and executed on a computer. The course focuses on modeling methodologies, mathematical techniques for implementing models, and statistical techniques for analyzing the results of simulations. Students develop simulations that use both simulation development toolkits and general-purpose programming languages. Also listed as COMP 155. Prerequisites: Completion of all Fundamental Skills; MATH 037 or MATH 039; MATH 045 or MATH 051, COMP 051 or COMP 061 or ENGR 019 with a "C-" or better.

EMGT 156. Introduction to Data Analytics for Engineers and Computer Scientists. 3 Units.
This course introduces students to state-of-the-art topics involving large collection of data. Particular emphasis is made on data collection, data storage and processing, extracting structured data from unstructured data, analytics, visualization, and a number of specific applications. Students explore large amounts of complex, digital data and learn about the tools and skills they need to solve knowledge from voluminous data sets. Prerequisites: ENGR 019 or COMP 051; upper division standing.

EMGT 170. Project Decision Making. 4 Units.
Project decision-making based upon engineering economy studies. This area covers techniques for economic evaluation of alternatives including time value of money, risk costs, effects of inflation, compound interest calculation, minimum attractive rate of return, capital budgeting, break-even analysis, sensitivity analysis, and risk analysis. A second facet of the course covers the fundamental aspects of project management within an engineering context. This area covers the project procurement process, project management and project scheduling. (Summer, Fall).

EMGT 172. Engineering Economy. 3 Units.
This course examines decision-making based upon engineering economy studies. This course covers techniques for economic evaluation of alternatives that includes time, value of money, risk cost, effects of taxation, monetary inflation, compound interest calculations, minimum attractive rate of return, capital budgeting, break-even analysis, sensitivity analysis and risk analysis. Prerequisite: Completion of all Fundamental Skills.

EMGT 174. Engineering Project Management. 3 Units.
Students study the fundamentals of project management that are used in estimating, planning, coordinating and controlling engineering projects. Topics include fundamentals of specifications and contracts, and the scheduling of projects. Prerequisites: Completion of all Fundamental Skills.

EMGT 176. Systems Engineering Management. 4 Units.
This course provides an introduction to the concepts and process of systems engineering. It uses interactive lectures, participatory class exercises and case studies to illustrate the framing and solution of problems through a systems engineering approach. The course stresses an understanding of the interdisciplinary aspects of systems development, operations and support. Prerequisites: Completion of all Fundamental Skills; MATH 055 with a "C-" or better, or permission of instructor.

EMGT 191. Independent Study. 1-4 Units.
Special individual projects are undertaken under the direction of one or more faculty members knowledgeable in the particular field of study. Permission of faculty member involved. The student must be in good academic standing.

EMGT 195. Engineering Management Synthesis. 4 Units.
The capstone course is for Engineering Management majors. Emphasis on integration and application of management concepts, including project proposal and design, with periodic reviews and written and oral reports. Prerequisites: Completion of all Fundamental Skills.

EMGT 197. Undergraduate Research. 1-4 Units.
This course offers applied or basic research in focused topics within Engineering Management under faculty supervision. Permission of faculty supervisor and department chair.

General Engineering Courses

ENGR 010. Dean's Seminar. 1 Unit.
This course is a survey of the profession and practice of engineering and computer science. It is an overview of the programs and methodologies of the School of Engineering and Computer Science that includes educational requirements, professional and career opportunities, introduction to the history of engineering and computing, and entrepreneurship. Hands-on activities and guest lecturers are included to complement the discussion sessions. The course provides basic skills, tools, and techniques applied to problem solving, teamwork and communication necessary for academic and professional success. Students are required to complete a design project, write a basic technical report and present their results.

ENGR 019. Computer Applications in Engineering. 3 Units.
This course introduces students to binary arithmetic, numerical methods applicable to engineering problems and their solution that use a programming language and computation tools. Topics include root finding, solving systems of equations, curve fitting and interpolation, numerical integration and differentiation, and numerical solution of ordinary differential equations. Students develop programming skills in a high level language and learn to use mathematical computation tools including and spreadsheets. Prerequisite may be taken concurrently. MATH 053 with a "C-" or better.

ENGR 020. Engineering Mechanics I (Statics). 3 Units.
Students study the fundamental principles of static equilibrium that results from the application of forces on particles and bodies. Prerequisites: MATH 053 and PHYS 053 with a "C-" or better.

ENGR 025. Professional Practice Seminar. 1 Unit.
This course is designed to prepare students for the Cooperative Education experience. Presentations are from representatives of industry, government, education and former Co-op students. Topics include engineering ethics, professionalism, time management and mock interviewing.
ENGR 030. Engineering and Computing Ethics in Society. 3 Units.
Major engineering achievements are explored with an emphasis on ethical principles and the global impact these achievements have on society and the environment. Topics include societal needs, personal rights, whistle blowing, conflicts of interest, professional autonomy, risk assessment, sustainable development and the application of engineering codes of ethics. Contemporary technological controversies are examined along with future developments that require engineers to stay current in their field. Student participation is expected in classroom discussions, oral presentations, and written analyses. Prerequisite: Fundamental Writing Skills requirement. (DVSY, GE2B)

ENGR 045. Materials Engineering. 4 Units.
Students examine the dependency of physical, chemical and mechanical properties on microscopic and macroscopic structure of materials. Laboratory experiments involve properties of materials such as metals, polymers, composites and ceramics. Prerequisites: CHEM 024 or CHEM 025 or CHEM 027; MATH 053 with a "C-" or better.

ENGR 110. Instrumentation and Experimental Methods. 3 Units.
Students study experimental techniques in the measurement of quantities such as biopotentials, force, pressure, sound, flow, temperature, strain and motion. Topics include statistical analysis and errors in measurement, data analysis and transmission. Students also use of instruments in the laboratory, and prepare a measurement project. Prerequisites: Completion of all Fundamental Skills; MATH 057; BENG 124 or ENGR 121 with a "C-" or better or permission of instructor.

ENGR 120. Engineering Mechanics II (Dynamics). 3 Units.
Students examine the fundamental principles of particles and bodies in motion under the action of external forces. Prerequisites: Completion of all Fundamental Skills and ENGR 020 with a "C-" or better.

ENGR 121. Mechanics of Materials. 4 Units.
Students study concepts of stress, strain and deformation, and the analysis and design of simple elements of structures and machines. The course introduces the failure theory and energy methods. Prerequisites: Completion of all Fundamental Skills and ENGR 020 with a "C-" or better. Prerequisite, may be taken concurrently: MATH 057 with a "C-" or better.

ENGR 122. Thermodynamics I. 3 Units.
Students examine the first and second laws of thermodynamics for open and closed systems. Topics include properties of gases and liquids, including entropy and availability. Students are also introduced to the Carnot and ideal Rankine cycles. Prerequisites: Completion of all Fundamental Skills; CHEM 024 or CHEM 025 or CHEM 027; PHYS 053 with a "C-" or better.

ENGR 150. Engineering and Science-Based Entrepreneurship. 4 Units.
Entrepreneurial businesses are increasingly based on new products, processes and services derived from the realms of engineering and/or science. In this hands-on course a multidisciplinary team of students will develop a business plan around a prototype for an original product or service created by students and/or faculty in engineering or the sciences. The plan will focus on the market, technical, operational, financial and organization/administrative dimensions of the business. Prerequisite: Senior standing.

ENGR 181. Professional Practice. 1-16 Units.
This course offers cooperative employment in a professional engineering environment. Students may register for a variable number of credits that depend upon the length of the work period. The course requires a satisfactory completion of the work assignment and a written report. Grading is on a Pass/Fail basis. Prerequisites: Completion of all Fundamental Skills.

ENGR 182. Professional Practice. 1-16 Units.
This course offers cooperative employment in a professional engineering environment. Students may register for a variable number of credits that depend upon the length of the work period. The course requires a satisfactory completion of the work assignment and a written report. Grading is on a Pass/Fail basis. Prerequisites: Completion of all Fundamental Skills.

ENGR 183. Professional Practice. 1-16 Units.
This course offers cooperative employment in a professional engineering environment. Students may register for a variable number of credits that depend upon the length of the work period. The course requires a satisfactory completion of the work assignment and a written report. Grading is on a Pass/Fail basis. Prerequisites: Completion of all Fundamental Skills.

ENGR 184. Professional Practice. 1-18 Units.
This course offers cooperative employment in a professional engineering environment. Students may register for a variable number of credits that depend upon the length of the work period. The course requires a satisfactory completion of the work assignment and a written report. Grading is on a Pass/Fail basis. Prerequisites: Completion of all Fundamental Skills.

ENGR 185. Professional Practice. 1-18 Units.
This course offers cooperative employment in a professional engineering environment. Students may register for a variable number of credits that depend upon the length of the work period. The course requires a satisfactory completion of the work assignment and a written report. Grading is on a Pass/Fail basis. Prerequisites: Completion of all Fundamental Skills.

ENGR 191. Independent Study. 1-4 Units.

Engineering Physics Courses

EPHY 133. Solid State Devices. 4 Units.
This course introduces concepts related to the crystal structure of semiconductors and electronic, optical, and magnetic properties of semiconductors. Dynamics of carriers under equilibrium and non-equilibrium conditions are presented as a frame work for understanding the behavior of a number of devices including Metal-Oxide-Semiconductor (MOS) and Hetero-junction Bipolar (HBT) devices. On such a background, the course builds an understanding of the latest advances in the field including quantum and nano devices. This course is cross listed with ECPE 133 and PHYS 170. Prerequisites: MATH 057 and PHYS 055 with a "C-" or better.

EPHY 144. Applied Electromagnetics. 4 Units.
The purpose of this course is for students to gain an understanding of transmission lines and field theory as it applies to communication circuits and systems. Electromagnetic wave propagation, reflection, and transmission through common materials are examined. This course is cross listed with ECE 144. Prerequisites: ECE 041; MATH 057; PHYS 055 with a "C-" or better.

EPHY 195. Senior Project I. 2 Units.
This course instructs students in the application of design processes and teamwork. Topics include multiple interdisciplinary team design experiences of increasing complexity. Projects incorporate consideration of engineering standards and realistic constraints such as economics, the environment, sustainability, manufacturability, and safety. Students are given instruction and practice in documentation and as well as oral and written communication skills. This course is cross listed with ECPE 195. Prerequisites: ECPE 131; ECPE 131L; ECPE 121, ECPE 141, ECPE 144, ECE 170, ECE 172, ENGR 122, EPHY 144, or PHYS 161, with a "C-" or better.
EPHY 196. Senior Project II. 2 Units.
This capstone design course integrates earlier studies, including EPHY 195, to perform interdisciplinary team design projects. Student design teams define a requirements document, a test document, and a design document for a prescribed product, then design, build and test a prototype. Complete documentation is expected. Final oral and written reports and project demonstrations are required. This course is cross listed with ECPE 196. Prerequisites: EPHY 195 or ECPE 195 with a "C-" or better.

Mechanical Engineering Courses
MECH 015. Mechanical Engineering Graphics. 3 Units.
This course covers the principles and applications of graphics in engineering design. Topics include pictorial and isometric sketching and orthographic projection, the use of auxiliary views and sections, drafting standards and conventions, dimensioning and tolerances, in addition to layout and assembly drawings, detail drawings and production drawings with SolidWorks and AutoCAD software. A laboratory is included. Prerequisite, may be taken concurrently: ENGR 010 with a "C-" or better.

MECH 100. Manufacturing Processes. 4 Units.
This course is a study of traditional manufacturing processes such as metal cutting, joining, casting, and heat treating as well as advanced processing methods; manufacturing with polymers, composites, and ceramics in addition to metals, tribology, nondestructive evaluation, and quality control. Laboratory projects involve manufacturing skills, reverse engineering, automated machines, geometric dimensioning and tolerancing, and statistical process control. Prerequisites: Completion of all Fundamental Skills; MECH 015 and ENGR 045 with a "C-" or better.

MECH 104. Introduction to Mechatronics. 3 Units.
Students examine a broad understanding of the main components of mechatronic systems and understanding of the general principles involved in computer-controlled machinery. Topics include sensing, actuation and control, practical knowledge of the development of simple embedded computer programs, understanding of the practical application of mechatronic systems in applications such as manufacturing, automobile systems and robotics. Prerequisites: Completion of all Fundamental Skills; MECH 015 and ENGR 045 with a "C-" or better.

MECH 120. Machine Design and Analysis I. 3 Units.
This course builds on fundamental principles learned in statistics, dynamics, and mechanics of materials, and applies them to the design and analysis of machines. Methods for performing load and stress analysis are learned along with analytical methods for solving deflection and stability problems. Static, impact, and fatigue failure theories for machines are also studied. Statistical methods for solving machine design problems are presented, and engineering design practices are integrated throughout the course. Prerequisites: Completion of all Fundamental Skills; ENGR 045, ENGR 120, ENGR 110 with a "C-" or better.

MECH 125. Machine Design and Analysis II. 3 Units.
Students learn how to design, analyze, and incorporate a variety of standard parts and devices into machines. These parts and devices include fasteners, gear systems, belt drives, chain drives, shafts, couplings, bearings, springs, clutches, and brakes. Principles of tribology (friction, wear, and lubrication) are introduced and applied to the design of machines. Engineering design practices are integrated throughout the course. Prerequisites: Completion of all Fundamental Skills and MECH 120 with a "C-" or better.

MECH 129. Vibrations. 3 Units.
Students study models of physical systems with lumped and distributed parameters. The studies include free and forced vibrations of machines and structures as well as excitation and response of single degree of freedom systems. The course introduces multiple degrees of freedom systems, finite element formulations and mode superposition techniques. Prerequisites: Completion of all Fundamental Skills; MATH 057, ENGR 019, ENGR 120 with a "C-" or better.

MECH 140. Engineering Design/Senior Project I. 3 Units.
This course discusses methods of initiating, planning, conceptualizing, and configuring engineering designs. The student uses these methods to develop an engineering design for a product or process that involves mechanical engineering. Product realization methods, project management, materials selection, manufacturing for designers, guided iteration, communication skills, economics, ethics, liability, and safety issues are put into practice through class activities. Prerequisites: Completion of all Fundamental Skills; ENGR 121 and ENGR 122 with a "C-" or better. Prerequisite, may be taken concurrently: ENGR 110; MECH 120 or MECH 150 with a "C-" or better.

MECH 141. Engineering Design/Senior Project II. 3 Units.
The student completes the design phase of their project. Parametric design techniques such as guided iteration, optimization, and Taguchi's methods are used to complete the detailed design of a product or process that involves mechanical engineering. Manufacturing necessary to complete the product or process is a requirement. Weekly oral and written progress reports are required along with final comprehensive oral and written reports. Prerequisites: Completion of all Fundamental Skills; MECH 120 and MECH 140 with a "C-" or better.

MECH 150. Heat Transfer. 3 Units.
Students study heat transfer by conduction in one, two and three dimensions in transient and steady state and heat transfer in extended surfaces. Topics include solutions by numerical methods, convection in external and internal flow, free convection, and radiation. Prerequisites: Completion of all Fundamental Skills; ENGR 122 and MATH 057 with a "C-" or better.

MECH 151. Applied Heat Transfer. 3 Units.
Applications and extensions of the topics in MECH 150. Multimode heat transfer; heat exchangers. Heat transfer with phase change. Prerequisites: Completion of all Fundamental Skills and MECH 150 with a "C-" or better.

MECH 155. Solar Energy Engineering. 3 Units.
This course introduces students to solar energy, sun-earth geometry, radiation measurement, insulation on surfaces, principles of solar collectors, applications such as space heating and solar ovens, and photovoltaics. Laboratory experiments are included. Prerequisites: Completion of all Fundamental Skills and ENGR 122 with a "C-" or better.
MECH 157. Thermodynamics II. 3 Units.
Students examine the thermodynamics of cycles for power and refrigeration. Other topics include the thermodynamics of gas mixture, chemical reactions, combustion, fuels, and processes involving air and water mixtures relating to heating, cooling, and ventilating for human comfort. The course includes experimental activities and written laboratory reports. Prerequisites: Completion of all Fundamental Skills and ENGR 122 with a "C-" or better.

MECH 158. Air Conditioning. 3 Units.
Students are introduced to air conditioning purpose, terminology and typical systems. Students study the analysis and design of air conditioning as applied to residential and small commercial buildings, and they learn the codes and standards applicable to this field. Prerequisites: Completion of all Fundamental Skills; ENGR 122 with a "C-" or better.

MECH 160. Fluid Dynamics. 3 Units.
Students study equations of continuity, energy, and momentum as applied to fluid flow. Topics include one dimensional compressible flow, and the introduction to more advanced topics, such as turbomachinery, viscous flow and potential flow. Prerequisites: Completion of all Fundamental Skills; CIVL 130 and ENGR 122 with a "C-" or better.

MECH 175. Systems Analysis and Control. 4 Units.
Students study dynamic analysis and control of systems composed of mechanical, electrical, hydraulic and thermal components. Students use of system modeling and simulation techniques to predict transient and steady state response, lumped parameter approximations and linearization. Students also use feedback to enhance system performance and stability and they study design of linear control systems in the time and frequency domains. Prerequisites: Completion of all Fundamental Skills; ECPE 041, ECPE 041L, ENGR 110, MECH 129 with a "C-" or better.

MECH 178. Finite Element Methods. 3 Units.
This course introduces the finite element method for engineering problems. Topics include matrix formulation of finite element models for problems in solid mechanics, heat transfer and fluid flow as well as solution of finite element equilibrium equations. Students study the development of computer algorithms and applications that use commercial finite element computer programs. Some familiarity with matrix methods is desirable. Prerequisites: Completion of all Fundamental Skills; ENGR 121 and ENGR 122 with a "C-" or better. Prerequisite, may be taken concurrently: CIVL 130 with a "C-" or better.

MECH 191. Independent Study. 1-4 Units.
Special individual projects are undertaken under the direction of one or more faculty members knowledgeable in the particular field of study. Permission of department chairperson and faculty members involved.

MECH 197. Undergraduate Research. 2-4 Units.
This course includes applied or basic research in mechanical engineering under faculty supervision. Projects may be experimental, mathematical or computational in nature. Permission of faculty supervisor and department chairperson. Student must be in good academic standing.