Skip to Content

Engineering Management
Phone: (209) 946-2575
Location: Baun Hall

Degrees Offered

Bachelor of Science in Engineering Management

The Bachelor of Science in Engineering Management provides academic preparation for individuals who plan a systems engineering, project management or management career in a technically related field. Pacific graduates from this program have done well in fields such as manufacturing plant engineering, applications engineering, technical sales, construction management, project engineering and cost engineering.

The Engineering Management core consists of courses that cover key topics within engineering management and business administration. In addition, the curriculum includes a large number of engineering electives that provide students with the flexibility to custom design a curriculum to fit their career objectives.

Educational Objectives

The Engineering Management Program at the University of the Pacific seeks to graduate engineers ready to enter professional practice or pursue graduate level studies. The educational objectives of the Engineering Management Program are to graduate engineers that:

  1. Are ready to enter professional practice or pursue graduate level studies;
  2. Use engineering knowledge as a base for solving problems requiring business and analytical skills;
  3. Are able to work in a wide array of different industries, positions and projects; and,
  4. Seek continual professional development and lifelong learning.

Bachelor of Science in Engineering Management

Students must complete a minimum of 120 units of academic work and a minimum of 32 units of Cooperative Education in order to earn the bachelor of science in engineering management.

I. General Education Requirements

PACS 001What is a Good Society4
PACS 002Topical Seminar on a Good Society4
PACS 003What is an Ethical Life?3

Note: 1) Pacific Seminars cannot be taken for Pass/No Credit. 2) Transfer students with 28 or more transfer units complete 2 additional General Education elective courses from below in place of taking PACS 001 and PACS 002.

One course from each subdivision below:

Social and Behavioral Sciences
Arts and Humanities
One course from the following categories:

Note: 1) Only one course can come from each subcategory (A, B, or C) within each category. 2) No more than 2 courses from a single department may be applied to meet the breadth program requirements, with the exception of certain 1-unit GE IIC courses.

II. Diversity Requirement

Students must complete one diversity course (3-4 units)
ENGR 030Engineering Ethics and Society3

Note: 1) Transfer students with 28 units or more transfer units prior to fall 2011 are encouraged but not required to complete a designated diversity course prior to graduation. 2) Courses are also used to meet general education and/or major/minor requirements.

III. Fundamental Skills

Students must demonstrate competence in:

Quantitative analysis

Note: 1) Fundamental skills must be satisfied prior to enrolling in upper division courses.

IV. Major Requirements

Mathematics and Science (32 units minimum)
MATH 039Probability with Applications to Statistics4
MATH 051Calculus I4
MATH 053Calculus II4
MATH 055Calculus III4
MATH 057Applied Differential Equations I: ODEs4
PHYS 053Principles of Physics I5
Two math/science electives (above MATH 057)8
Engineering Science (13 units minimum)
ENGR 010Dean's Seminar1
ENGR 019Computer Applications in Engineering3
ENGR 020Engineering Mechanics I (Statics)3
Two Engineering Science electives6
Engineering Management Core (32 units minimum)
BUSI 031Principles of Financial Accounting4
EMGT 142Design and Innovation3
EMGT 142LDesign and Innovation Lab1
EMGT 162Introduction to Data Analytics for Engineers and Computer Scientists3
EMGT 170Project Decision Making4
EMGT 174Engineering Project Management3
EMGT 176Systems Engineering Management4
Two BUSI/EMGT electives8
ENGR 025Professional Practice Seminar1
Engineering Discipline Electives (27 units minimum)
EMGT 195Engineering Management Synthesis4
Engineering Discipline Electives *23
Cooperative Education (minimum 32 units)
ENGR 181Professional Practice14-18
ENGR 182Professional Practice14-18
ENGR 183Professional Practice14-18

Each student works with their advisor to develop a customized set of Engineering Discipline electives to meet student specific goals and objectives. The Engineering Management website describes potential sets of electives for different career paths.

Engineering Management Courses

EMGT 142. Design and Innovation. 3 Units.

This course brings buyers, sellers and end-users of design, prototyping and testing together in an educational and real problem environment. Students will learn how to identify innovation, and develop, design and market new product or service. Students will also learn the nature and importance of technological innovation in commercial organizations with particular reference to bringing a new product or service off the drawing board, through virtual development, and into a modern pre-sales promotional environment in weekly project deliverables. Prerequisite: Upper division standing in engineering.

EMGT 142L. Design and Innovation Lab. 1 Unit.

The laboratory component of EMGT 142, course provides the basics of Industrial Design techniques including drawing, graphical, presentation and design communication skills. Students learn how to design functional objects, sculpture and use a variety of 2D and 3D applications to produce those models as physical objects. A variety of rapid prototyping methods include: 3D Printing, Vacuum Forming, and Laser Cutting is used in weekly project deliverables. Prerequisite: Upper division. Corequisite: EMGT 142.

EMGT 155. Computer Simulation. 4 Units.

This course explores digital simulation in which a model of a system is implemented and executed on a computer. The course focuses on modeling methodologies, mathematical techniques for implementing models, and statistical tecniques for analyzing the results of simulations. Students develop simulations that use both simulation development toolkits and general-purpose programming languages. Also listed as COMP 155. Prerequisites: Completion of all Fundamental Skills; MATH 037 or MATH 039; MATH 045 or MATH 051, COMP 051 or ENGR 019 with a "C-" or better.

EMGT 162. Introduction to Data Analytics for Engineers and Computer Scientists. 3 Units.

This course introduces students to state-of-the-art topics involving large collection of data. Particular emphasis is made on data collection, data storage and processing, extracting structured data from unstructured data, analytics, visualization, and a number of specific applications. Students explore large amounts of complex, digital data and learn about the tools and skills they need to solve knowledge from voluminous data sets. Prerequisites: ENGR 019 or COMP 051; upper division standing.

EMGT 170. Project Decision Making. 4 Units.

Project decision-making based upon engineering economy studies. This area covers techniques for economic evaluation of alternatives including time value of money, risk costs, effects of inflation, compound interest calculation, minimum attractive rate of return, capital budgeting, break-even analysis, sensitivity analysis, and risk analysis. A second facet of the course covers the fundamental aspects of project management within an engineering context. This area covers the project procurement process, project management and project scheduling. (Summer, Fall).

EMGT 172. Engineering Economy. 3 Units.

This course examines decision-making based upon engineering economy studies. This course covers techniques for economic evaluation of alternatives that includes time, value of money, risk cost, effects of taxation, monetary inflation, compound interest calculations, minimum attractive rate of return, capitol budgeting, break-even analysis, sensitivity analysis and risk analysis. Prerequisite: Completion of all Fundamental Skills.

EMGT 174. Engineering Project Management. 3 Units.

Students study the fundamentals of project management that are used in estimating, planning, coordinating and controlling engineering projects. Topics include fundamentals of specifications and contracts, and the scheduling of projects. Prerequisites: Completion of all Fundamental Skills.

EMGT 176. Systems Engineering Management. 4 Units.

This course provides an introduction to the concepts and process of systems engineering. It uses interactive lectures, participatory class exercises and case studies to illustrate the framing and solution of problems through a systems engineering approach. The course stresses an understanding of the interdisciplinary aspects of systems development, operations and support. Prerequisites: Completion of all Fundamental Skills; MATH 039 and MATH 055 with a "C-" or better or permission of instructor.

EMGT 191. Independent Study. 1-4 Units.

Special individual projects are undertaken under the direction of one or more faculty members knowledgeable in the particular field of study. Permission of faculty member involved. The student must be in good academic standing.

EMGT 195. Engineering Management Synthesis. 4 Units.

The capstone course is for Engineering Management majors. Emphasis on integration and application of management concepts. including project proposal and design, with periodic reviews and written and oral reports. Prerequisites: Completion of all Fundamental Skills.

EMGT 197. Undergraduate Research. 1-4 Units.

This course offers applied or basic research in focused topics within Engineering Management under faculty supervision. Permission of faculty supervisor and department chair.

Students graduating with a BS in Engineering Management will have:

(a) An ability to apply knowledge of mathematics, science and engineering in the solution of Engineering Management problems.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d) An ability to function on multidisciplinary teams.
(e) An ability to identify, formulate, and solve Engineering Management problems.
(f) An understanding of professional and ethical responsibility.
(g) An ability to communicate effectively.
(h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environment, and societal context.
(i) A recognition of the need for, and an ability to engage in life-long learning.
(j) A knowledge of contemporary issues related to Engineering Management.
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Engineering Management Faculty

Abel A. Fernandez, Professor of Civil Engineering and Director of Engineering Management, 2000, BS, Electric Power Engineering, Rensselaer Polytechnic Institute, 1974; ME, Electric Power Engineering, 1976; MBA, 1976; PhD, Industrial Engineering, University of Central Florida, 1995. Registered Professional Engineer. Project management, systems engineering, resource management, risk analysis and management, modeling and simulation, optimization.

Mehdi Khazaeli, Assistant Professor of Civil Engineering and Engineering Management, 2014, BS, Industrial Engineering, Isfahan University of Technology, 2005; MS,Product Design and Management, University of Liverpool, 2009; PhD, Engineering Science, Louisiana State University, 2013. Data Analytics, Project Management, New Product Development, Building Information Modeling.